By Topic

Finite-state codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pollara, F. ; Jet Propulsion Lab., Pasadena, CA, USA ; McEliece, R.J. ; Abdel-Ghaffar, K.

A class of codes called finite-state (FS) codes is defined and investigated. The codes, which generalize both block and convolutional codes, are defined by their encoders, which are finite-state machines with parallel inputs and outputs. A family of upper bounds on the free distance of a given FS code is derived. A general construction for FS codes is given, and it is shown that in many cases the FS codes constructed in this way have a free distance that is the largest possible. Catastrophic error propagation (CEP) for FS codes is also discussed. It is found that to avoid CEP one must solve the graph-theoretic problem of finding a uniquely decodable edge labeling of the state diagram

Published in:

Information Theory, IEEE Transactions on  (Volume:34 ,  Issue: 5 )