Cart (Loading....) | Create Account
Close category search window
 

Super-exponential methods for blind deconvolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shalvi, O. ; Dept. of Electr. Eng.-Syst., Tel-Aviv Univ., Israel ; Weinstein, E.

A class of iterative methods for solving the blind deconvolution problem, i.e. for recovering the input of an unknown possibly nonminimum-phase linear system by observation of its output, is presented. These methods are universal do not require prior knowledge of the input distribution, are computationally efficient and statistically stable, and converge to the desired solution regardless of initialization at a very fast rate. The effects of finite length of the data, finite length of the equalizer, and additive noise in the system on the attainable performance (intersymbol interference) are analyzed. It is shown that in many cases of practical interest the performance of the proposed methods is far superior to linear prediction methods even for minimum phase systems. Recursive and sequential algorithms are also developed, which allow real-time implementation and adaptive equalization of time-varying systems

Published in:

Information Theory, IEEE Transactions on  (Volume:39 ,  Issue: 2 )

Date of Publication:

Mar 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.