By Topic

Decision tree design from a communication theory standpoint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Goodman, R.M. ; Dept. of Electr. Eng., California Inst. of Technol., Pasadena, CA, USA ; Smyth, P.

A communication theory approach to decision tree design based on a top-town mutual information algorithm is presented. It is shown that this algorithm is equivalent to a form of Shannon-Fano prefix coding, and several fundamental bounds relating decision-tree parameters are derived. The bounds are used in conjunction with a rate-distortion interpretation of tree design to explain several phenomena previously observed in practical decision-tree design. A termination rule for the algorithm called the delta-entropy rule is proposed that improves its robustness in the presence of noise. Simulation results are presented, showing that the tree classifiers derived by the algorithm compare favourably to the single nearest neighbour classifier

Published in:

Information Theory, IEEE Transactions on  (Volume:34 ,  Issue: 5 )