Cart (Loading....) | Create Account
Close category search window

The accuracy of the computation of optical flow and of the recovery of motion parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Micheli, E.D. ; Istituto di Cibernetica e Biofisica, CNR, Genova, Italy ; Torre, V. ; Uras, S.

The accuracy and the dependence on parameters of a general scheme for the analysis of time-varying image sequences are discussed. The approach is able to produce vector fields from which it is possible to recover 3-D motion parameters such as time-to-collision and angular velocity. The numerical stability of the computed optical flow and the dependence of the recovery of 3-D motion parameters on spatial and temporal filtering is investigated. By considering optical flows computed on subsampled images or along single scanlines, it is also possible to recover 3-D motion parameters from reduced optical flows. An adequate estimate of time-to-collision can be obtained from sequences of images with spatial resolution reduced to 128×128 pixels or from sequences of single scanlines passing near the focus of expansion. The use of Kalman filtering increases the accuracy and the robustness of the estimation of motion parameters. The proposed approach seems to be able to provide not only a theoretical background but also practical tools that are adequate for the analysis of time-varying image sequences

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Date of Publication:

May 1993

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.