Cart (Loading....) | Create Account
Close category search window
 

On the design of fault-tolerant two-dimensional systolic arrays for yield enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jung Hwan Kim ; Center for Adv. Comput. Studies, Univ. of SW Louisiana, Lafayette, LA, USA ; Reddy, S.M.

The authors propose a unified approach to the design of the fault-tolerant systolic arrays incorporating design for testability, a testing scheme, a reconfiguration algorithm, time-complexity analysis of the proposed reconfiguration algorithm, and yield analysis. A main feature of the proposed designs is that multiple processing elements in a 2-D array can be tested simultaneously, thus reducing the testing time significantly. Another feature is that with the introduction of delay registers, the proposed reconfiguration algorithm reconfigures a faulty 2-D systolic array into a fault-free array without reducing throughput. The overall aim is to provide a design for a 2-D systolic array that produces high yield in VLSI/WSI implementations

Published in:

Computers, IEEE Transactions on  (Volume:38 ,  Issue: 4 )

Date of Publication:

Apr 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.