By Topic

LQG/LTR robust control of nuclear reactors with improved temperature performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Ben-Abdennour ; Pennsylvania State Univ., University Park, PA, USA ; R. M. Edwards ; K. Y. Lee

The authors present the design of a robust controller using the linear quadratic Gaussian with loop transfer recovery (LQG/LTR) for nuclear reactors with the objective of maintaining a desirable performance for reactor fuel temperature and the temperature of the coolant leaving the reactor for a wide range of reactor powers. The results obtained are compared to those for an observer-based state feedback optimal reactor temperature controller. Sensitivity analysis of the dominant closed-loop eigenvalues and nonlinear simulation are used to demonstrate and compare the performance and robustness of the two controllers. The LQG/LTR approach is systematic, methodical, and easy to design and can give improved temperature performance over a wide range of reactor operation

Published in:

IEEE Transactions on Nuclear Science  (Volume:39 ,  Issue: 6 )