By Topic

Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
N. P. Papanikolopoulos ; Dept. of Comput. Sci., Minnesota Univ., Minneapolis, MN, USA ; P. K. Khosla ; T. Kanade

The authors present algorithms for robotic (eye-in-hand configuration) real-time visual tracking of arbitrary 3D objects traveling at unknown velocities in a 2D space (depth is given as known). Visual tracking is formulated as a problem of combining control with computer vision. A mathematical formulation of the control problem that includes information from a novel feedback vision sensor and represents everything with respect to the camera frame is presented. The sum-of-squared differences (SSD) optical flow is used to compute the vector of discrete displacements each instant of time. These displacements can be fed either directly to a PI (proportional-integral) controller or to a pole assignment controller or discrete steady-state Kalman filter. In the latter case, the Kalman filter calculates the estimated values of the system's states and the exogenous disturbances, and a discrete LQG (linear-quadratic Gaussian) controller computes the desired motion of the robotic system. The outputs of the controllers are sent to the Cartesian robotic controller. Performance results are presented

Published in:

IEEE Transactions on Robotics and Automation  (Volume:9 ,  Issue: 1 )