By Topic

Hierarchical schemes for curve representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gùˆnther, O. ; FAW, Ulm, Germany ; Dominguez, S.

The performance of three curve representation schemes are compared. They are the strip-tree, Bezier-curve-employing, and arc-tree methods. Each scheme represents a curved shape as a hierarchy of approximations, where higher levels in the hierarchy correspond to coarser approximations of the curve. In addition, each approximation typically corresponds to a bounding area that encloses the actual curve. When geometric operations are computed, coarse approximation of the curve are initially addressed and finer approximation levels are processed if necessary. It is shown that the three representations differ in the choice of bounding areas, the type and amount of information stored at each approximation level, and the method of deciding whether to proceed to finer approximations.<>

Published in:

Computer Graphics and Applications, IEEE  (Volume:13 ,  Issue: 3 )