By Topic

The infeasibility of quantifying the reliability of life-critical real-time software

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Butler, R.W. ; NASA Langley Res. Center, Hampton, VA, USA ; Finelli, George B.

This work affirms that the quantification of life-critical software reliability is infeasible using statistical methods, whether these methods are applied to standard software or fault-tolerant software. The classical methods of estimating reliability are shown to lead to exorbitant amounts of testing when applied to life-critical software. Reliability growth models are examined and also shown to be incapable of overcoming the need for excessive amounts of testing. The key assumption of software fault tolerance-separately programmed versions fail independently-is shown to be problematic. This assumption cannot be justified by experimentation in the ultrareliability region, and subjective arguments in its favor are not sufficiently strong to justify it as an axiom. Also, the implications of the recent multiversion software experiments support this affirmation

Published in:

Software Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 1 )