Cart (Loading....) | Create Account
Close category search window
 

Neuron MOS binary-logic integrated circuits. II. Simplifying techniques of circuit configuration and their practical applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shibata, T. ; Dept. of Electron. Eng., Tohoku Univ., Sendai, Japan ; Ohmi, T.

For pt.I see ibid., vol.40, no.3, p.570-6 (March 1993). The fundamental circuit ideas developed by the authors in Part I are applied to practical circuits, and the impact of neuron MOSFET on the implementation of binary-logic circuits is examined. For this purpose, two techniques are presented to simplify the circuit configurations. It is shown that the input-stage D/A converter circuit in the basic configuration can be eliminated without any major problems, resulting in improved noise margins and speed performance. Then a design technique for symmetric functions, which is especially important when the number of input variables increases, is presented. The νMOS logic design is characterized by a large reduction in the number of transistors as well as of interconnections. However, the decrease in transistor count comes at a cost in process tolerance due to the multivalued nature of the device operation. Test circuits were fabricated by a typical double-polysilicon CMOS process, and the measurement results are presented

Published in:

Electron Devices, IEEE Transactions on  (Volume:40 ,  Issue: 5 )

Date of Publication:

May 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.