By Topic

The process dependence on positive bias temperature aging instability of p+(B) polysilicon-gate MOS devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ushizaka, H. ; NTT LSI Lab., Kanagawa, Japan ; Sato, Yoshiyuki

During positive bias temperature (BT) aging, a large number of interface traps on p+(B) polysilicon MOS devices are generated in the upper half of the bandgap without an increase in the charges trapped in the gate oxide. The increase in interface traps can be reduced by processes which exclude the hydrogen included during fabrication. The increase in the interface-state density is explained as follows. The generation of the interface traps is caused by hydrogen ions reaching at the SiO2/Si interface through the gate oxide from the polysilicon-gate electrode. The hydrogen ions combine with activated boron and are released from the boron under positive BT aging. The increase in interface traps is formulated by equations which are derived from the above model

Published in:

Electron Devices, IEEE Transactions on  (Volume:40 ,  Issue: 5 )