By Topic

Thermal modeling of power gallium arsenide microwave integrated circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Webb, P.W. ; Sch. of Electron. & Electr. Eng., Birmingham Univ., Edgbaston, UK

Manufacturers are developing power devices for ever higher frequencies using GaAs MESFETs and heterojunction bipolar devices constructed with III-V compounds on GaAs substrates, as well as integrated power devices on monolithic microwave integrated circuits (MMICs). A problem with the technology is the low thermal conductivity of gallium arsenide, giving rise to thermal design problems that must be solved if good reliability is to be achieved. A three-dimensional numerical simulator is used to study this problem. In particular, the approximations which are possible in performing realistic assessments of the thermal resistance of typical GaAs power device structures under steady-state conditions are examined

Published in:

Electron Devices, IEEE Transactions on  (Volume:40 ,  Issue: 5 )