Cart (Loading....) | Create Account
Close category search window

A new approach for the performance analysis of a single-bus multiprocessor system with general service times

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
van de Liefvoort, A. ; Comput. Sci. Telecommun. Program, Missouri Univ., Kansas City, MO, USA ; Subramanian, N.

The linear algebraic approach to queuing theory is applied to analyze the performance of a typical single-bus multiprocessor system. This system can be modeled as an M/G/1/N queuing system with load-dependent arrivals. The method presented requires only that the nonexponential service time distribution for the system be a matrix-exponential, that is, one with a rational Laplace transform. Using linear algebraic techniques, expressions are obtained for the performance characteristics of interest, such as the processing power for the multiprocessor system. The algorithm does not rely on root finding and can be implemented using symbolic programming techniques. The explicit closed-form expression for the processing power is presented for some special cases

Published in:

Computers, IEEE Transactions on  (Volume:42 ,  Issue: 3 )

Date of Publication:

Mar 1993

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.