By Topic

A comparison of integral equations with unique solution in the resonance region for scattering by conducting bodies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Correia, L.M. ; Inst. Superior Tecnico, Tech. Univ. of Lisbon, Portugal

A comparison of integral equations, for problems involving scattering by arbitrary-shape conducting bodies, having a unique solution in the resonance region is presented. The augmented electric and magnetic field integral equations and the combined field integral equation, in their exact and approximate versions, are considered. The integral equations and the basis and test functions used in the method of moments to solve them are reviewed. Their implementation in a computer code is analyzed, mainly the relation between the matrix properties and the CPU time and memory. Numerical results (condition number and backscattering cross section) are presented for the cube. It is shown that the combined field integral equation, and the approximate (symmetric) combined field integral equation, are the most efficient equations to use in the neighborhood of resonant frequencies, because the overdetermined augmented integral equations require an extra matrix multiplication

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:41 ,  Issue: 1 )