By Topic

Classification of radar targets using synthetic neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jouny, I. ; Dept. of Electr. Eng., Lafayette Coll., Easton, PA, USA ; Garber, F.D. ; Ahalt, S.C.

Radar target classification performance of neural networks is evaluated. Time-domain and frequency-domain target features are considered. The sensitivity of the neural network algorithm to changes in network topology and training noise level is examined. The problem of classifying radar targets at unknown aspect angles is considered. The performance of the neural network algorithms is compared with that of decision-theoretic classifiers. Neural networks can be effectively used as radar target classification algorithms with an expected performance within 10 dB (worst case) of the optimum classifier

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:29 ,  Issue: 2 )