By Topic

Digital system design in the presence of single event upsets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karp, S. ; Mayo Found., Rochester, MN, USA ; Gilbert, B.K.

The authors consider the effects of single event upsets (SEUs) on digital systems, and show techniques for designing reliable systems with current levels of SEU protection. Three main systems are discussed: main memory, logic, and cache memory. A design for the main and cache memory subsystems that are SEU protected is also described. With SEU defined in bit days p, and using single error correction, it is shown that for all subsystems considered, an effective upset rate which is proportional to the product of p2 and the time between corrections, or scrub time, can be obtained. Data for memory chip size and performance derived from the gallium-arsenide (GaAs) pilot lines funded by the Defense Advanced Research Projects Agency (DARPA) throughout the 1980s are used

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:29 ,  Issue: 2 )