By Topic

A 320 MFLOPS CMOS floating-point processing unit for superscalar processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
N. Ide ; Toshiba Corp., Kawasaki, Japan ; H. Fukuhisa ; Y. Kondo ; T. Yoshida
more authors

A CMOS pipelined floating-point processing unit (FPU) for superscalar processors is described. It is fabricated using a 0.5 μm CMOS triple-metal-layer technology on a 61 mm2 die. The FPU has two execution modes to meet precise scientific computations and real-time applications. It can start two FPU operations in each cycle, and this achieves a peak performance of 160 MFLOPS double or single precision with an 80 MHz clock. Furthermore, the original computation mode, twin single-precision computation, double the peak performance and delivers 320 MFLOPS single precision. Its full bypass reduces the latency of operations, including load and store, and achieves an effective throughput even in nonvectorizable computations. An out-of-order completion is provided by using a new exception prediction method and a pipeline stall technique

Published in:

IEEE Journal of Solid-State Circuits  (Volume:28 ,  Issue: 3 )