By Topic

Turbine generator laboratory model tests to damp torsional oscillations with supplementary signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sokhey, I.S. ; Southern Electric plc, Maidenhead, UK ; Limebeer, D.J.N. ; MacDonald, D.C.

The improvement of generator stability by the use of supplementary signals into the voltage regulator and governor loops using discrete-time linear optimal control theory has been studied with particular emphasis on providing better damping for torsional oscillations. A multi-inertia laboratory model equipped with data acquisition and control computers was constructed to model the shaft dynamics of a 660 MW Drax turbine-generator. It is shown that the shaft torsional phenomena can be adequately simulated on a micro-synchronous-generator at least as far as the dominant shaft torsional modes of vibration are concerned. The practical implementation of multi-mode linear quadratic Gaussian (LQG) controllers has been shown to enhance system stability and provide better damping to the lower frequency torsional modes, which are those most susceptible to excitation

Published in:

Energy Conversion, IEEE Transactions on  (Volume:8 ,  Issue: 1 )