By Topic

An artificial neural network based adaptive power system stabilizer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhang, Y. ; Dept. of Electr. & Comput. Eng., Calgary Univ., Alta., Canada ; Chen, G.P. ; Malik, O.P. ; Hope, G.S.

An artificial neural network (ANN)-based power system stabilizer (PSS) and its application to power systems are presented. The ANN-based PSS combines the advantages of self-optimizing pole shifting adaptive control strategy and the quick response of ANN to introduce a new generation PSS. A popular type of ANN, the multilayer perceptron with error backpropagation training method, is used in this PSS. The ANN was trained by the training data group generated by the adaptive power system stabilizer (APSS). During the training, the ANN was required to memorize and simulate the control strategy of APSS until the differences were within the specified criteria. Results show that the proposed ANN-based PSS can provide good damping of the power system over a wide operating range and significantly improve the dynamic performance of the system

Published in:

Energy Conversion, IEEE Transactions on  (Volume:8 ,  Issue: 1 )