By Topic

The L2-polynomial spline pyramid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Unser ; Nat. Center for Res. Resources, Nat. Inst. of Health, Bethesda, MD, USA ; A. Aldroubi ; M. Eden

The authors are concerned with the derivation of general methods for the L2 approximation of signals by polynomial splines. The main result is that the expansion coefficients of the approximation are obtained by linear filtering and sampling. The authors apply those results to construct a L2 polynomial spline pyramid that is a parametric multiresolution representation of a signal. This hierarchical data structure is generated by repeated application of a REDUCE function (prefilter and down-sampler). A complementary EXPAND function (up-sampler and post-filter) allows a finer resolution mapping of any coarser level of the pyramid. Four equivalent representations of this pyramid are considered, and the corresponding REDUCE and EXPAND filters are determined explicitly for polynomial splines of any order n (odd). Some image processing examples are presented. It is demonstrated that the performance of the Laplacian pyramid can be improved significantly by using a modified EXPAND function associated with the dual representation of a cubic spline pyramid

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:15 ,  Issue: 4 )