By Topic

Constitutive relations for tin-based solder joints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Darveaux, R. ; Motorola Inc., Fort Lauderdale, FL, USA ; Banerji, K.

Extensive data on 62Sn36Pb2Ag, 60Sn40Pb, 96.5Sn3.5Ag, 97.5Pb2.5Sn, and 95Pb5Sn solder are presented. All of the data were collected on soldered assemblies to properly account for the effects of grain size and intermetallic compound distribution. Tensile and shear loading were employed in the strain rate range between 10-8 and 10-1 s-1 and the temperature range between 25 and 135°C. It is remarkable to note that all of the data can be fit to the same general form of constitutive relations; i.e., only the constants depend on the solder alloy. The derived constitutive relations are used to predict solder joint response under thermal cycling. Based on the calculated hysteresis loops, it is apparent that each solder will have a different acceleration factor between field use cycling and accelerated test cycling

Published in:

Components, Hybrids, and Manufacturing Technology, IEEE Transactions on  (Volume:15 ,  Issue: 6 )