By Topic

Trapezoid self-scheduling: a practical scheduling scheme for parallel compilers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tzen, T.H. ; Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA ; Ni, L.M.

A practical processor self-scheduling scheme, trapezoid self-scheduling, is proposed for arbitrary parallel nested loops in shared-memory multiprocessors. Generally, loops are the richest source of parallelism in parallel programs. To dynamically allocate loop iterations to processors, one may achieve load balancing among processors at the expense of run-time scheduling overhead. By linearly decreasing the chunk size at run time, the best tradeoff between the scheduling overhead and balanced workload can be obtained in the proposed trapezoid self-scheduling approach. Due to its simplicity and flexibility, this approach can be efficiently implemented in any parallel compiler. The small and predictable number of chores also allow efficient management of memory in a static fashion. The experiments conducted in a 96-node Butterfly GP-1000 clearly show the advantage of the trapezoid self-scheduling over other well-known self-scheduling approaches

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:4 ,  Issue: 1 )