Cart (Loading....) | Create Account
Close category search window
 

Local reproducible smoothing without shrinkage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Oliensis, J. ; Dept. of Comput. & Inf. Sci., Massachusetts Univ., Amherst, MA, USA

A simple local smoothing filter is defined for curves or surfaces, combining the advantages of Gaussian smoothing and Fourier curve description. Unlike Gaussian filters, the filter described has no shrinkage problem. Repeated application of the filter does not yield a curve or surface smaller than the original but simply reproduces the approximate result that would have been obtained by a single application at the largest scale. Unlike Fourier description, the filter is local in space. The wavelet transform of Y. Meyer (1989) is also shown to have these properties

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 3 )

Date of Publication:

Mar 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.