By Topic

Probability intervals over influence diagrams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fertig, K.W. ; Rockwell Int. Sci. Center, Palo Alto, CA, USA ; Breese, J.S.

A mechanism for performing probabilistic reasoning in influence diagrams using interval rather than point-valued probabilities is described. Procedures for operations corresponding to conditional expectation and Bayesian conditioning in influence diagrams are derived where lower bounds on probabilities are stored at each node. The resulting bounds for the transformed diagram are shown to be the tightest possible within the class of constraints on probability distributions that can be expressed exclusively as lower bounds on the component probabilities of the diagram. Sequences of these operations can be performed to answer probabilistic queries with indeterminacies in the input and for performing sensitivity analysis on an influence diagram. The storage requirements and computational complexity of this approach are comparable to those for point-valued probabilistic inference mechanisms

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:15 ,  Issue: 3 )