By Topic

Planar and finger-shaped optical tactile sensors for robotic applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Begej, S. ; Begej Corp., Littleton, CO, USA

Progress is described regarding the development of optical tactile sensors specifically designed for application to dexterous robotics. These sensors operate on optical principles involving the frustration of total internal reflection at a waveguide/elastomer interface and produce a grey-scale tactile image that represents the normal (vertical) forces of contact. The first tactile sensor discussed is a compact, 32×32 planar sensor array intended for mounting on a parallel-jaw gripper. Optical fibers were employed to convey the tactile image to a CCD camera and microprocessor-based image analysis system. The second sensor had the shape and size of a human fingertip and was designed for a dexterous robotic hand. It contained 257 sensing sites (taxels) distributed in a dual-density pattern that included a tactile fovea near the tip measuring 13×13 mm and containing 169 taxels. The design and construction details of these tactile sensors are presented, in addition to photographs of tactile imprints

Published in:

Robotics and Automation, IEEE Journal of  (Volume:4 ,  Issue: 5 )