By Topic

Four-channel, long-wavelength transmitter arrays incorporating passive laser/singlemode-fiber alignment on silicon waferboard

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

Individually addressable, four-channel transmitter arrays operating at a wavelength of 1.3 μm have been developed based on a hybrid optoelectronic integration approach called silicon waferboard. This approach uses micromachined silicon substrates as a platform for integration of electronic, optoelectronic, and optical components. It should lead toward the development of optical multichip modules. Silicon waferboard uses mechanical alignment features fabricated on the surface of a silicon chip to permit passive optical alignment of components such as lasers and optical fibers. The transmitter array comprises a four-channel InGaAsP-InP laser array that is passively aligned to four single-mode fibers held in V-grooves. The transmitter array also includes a four-channel GaAs MESFET driver array chip that provides high-speed drive currents to the individual lasers. The laser array, driver array, and optical fibers are all spaced on 350-μm centers. which results ill a transmitter array that fits within a width of only 2 mm. Packages with high-speed electrical and optical I/Os have also been designed to accommodate the transmitter array waferboards for use in system applications

Published in:

Electronic Components and Technology Conference, 1992. Proceedings., 42nd

Date of Conference:

18-20 May 1992