Cart (Loading....) | Create Account
Close category search window
 

Join and data redistribution algorithms for hypercubes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baru, C.K. ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA ; Padmanabhan, S.

An important aspect of database processing in parallel computer systems is the use of data parallel algorithms. Several parallel algorithms for the relational database join operation in a hypercube multicomputer system are given. The join algorithms are classified as cycling or global partitioning based on the tuple distribution method employed. The various algorithms are compared under a common framework, using time complexity analysis as well as an implementation on a 64-node NCUBE hypercube system. In general, the global partitioning algorithms demonstrate better speedup. However, the cycling algorithm can perform better than the global algorithms in specific situations, viz., when the difference in input relation cardinalities is large and the hypercube dimension is small. The usefulness of the data redistribution operation in improving the performance of the join algorithms, in the presence of uneven data partitions, is examined. The results indicate that redistribution significantly decreases the join algorithm execution times for unbalanced partitions

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Feb 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.