By Topic

Data-driven discovery of quantitative rules in relational databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
J. Han ; Sch. of Comput. Sci., Simon Fraser Univ., Burnaby, BC, Canada ; Y. Cai ; N. Cercone

A quantitative rule is a rule associated with quantitative information which assesses the representativeness of the rule in the database. An efficient induction method is developed for learning quantitative rules in relational databases. With the assistance of knowledge about concept hierarchies, data relevance, and expected rule forms, attribute-oriented induction can be performed on the database, which integrates database operations with the learning process and provides a simple, efficient way of learning quantitative rules from large databases. The method involves the learning of both characteristic rules and classification rules. Quantitative information facilitates quantitative reasoning, incremental learning, and learning in the presence of noise. Moreover, learning qualitative rules can be treated as a special case of learning quantitative rules. It is shown that attribute-oriented induction provides an efficient and effective mechanism for learning various kinds of knowledge rules from relational databases

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:5 ,  Issue: 1 )