Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

ENIGMA: a system that learns diagnostic knowledge

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Giordana, A. ; Dipartimento di Inf., Torino Univ., Italy ; Saitta, L. ; Bergadano, F. ; Brancadori, F.
more authors

The results of extensive experimentation aimed at assessing the concrete possibilities of automatically building a diagnostic expert system, to be used in-field in an industrial domain, by means of machine learning techniques, are described. The system, ENIGMA, is an incremental version of the ML-SMART system, which acquires a network of first-order logic rules, starting from a set of classified examples and a domain theory. An application is described that consists of discovering malfunctions in electromechanical apparatus. ENIGMA's efficacy in acquiring sophisticated knowledge and handling complex structured examples is largely due to its underlying database management system, which supports the learning operators, defined at the abstract level, with a set of primitives, taken from the field of deductive databases. An expert system, MEPS, devoted to the same task, has also been manually developed. A number of comparisons along different dimensions of the manual and automatic development process have been possible, allowing some practical indications to be suggested

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:5 ,  Issue: 1 )