By Topic

Performance of DMI and eigenspace-based beamformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
L. Chang ; Dept. of Electr. Eng., Nat. Taiwan Univ., Taipei, Taiwan ; C. -C. Yeh

The performance of the direct matrix inversion (DMI) method for antenna arrays of arbitrary geometry is analyzed by asymptotic statistical techniques. The effects of eigenspace disturbance caused by finite samples on the output interference and noise powers are examined under the unit gain constraint in the direction of the desired signal. The results show that the performance of the DMI method is degraded mostly by the disturbed noise subspace. That suggests the use of an eigenspace-based beamformer in which the weight vector is computed by using the signal-plus-interference subspace component of the sample correlation matrix. Convergence properties of the eigenspace-based beamformer are evaluated for the cases in which the source number is known and in which it is overestimated. Theoretical analyses validated by computer simulations indicate that the eigenspace-based beamformer has faster convergence rate than the DMI method

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:40 ,  Issue: 11 )