By Topic

Efficient multiframe Wiener restoration of blurred and noisy image sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
M. K. Ozkan ; Dept. of Electr. Eng., Rochester Univ., NY, USA ; A. T. Erdem ; M. I. Sezan ; A. M. Tekalp

Computationally efficient multiframe Wiener filtering algorithms that account for both intraframe (spatial) and interframe (temporal) correlations are proposed for restoring image sequences that are degraded by both blur and noise. One is a general computationally efficient multiframe filter, the cross-correlated multiframe (CCMF) Wiener filter, which directly utilizes the power and cross power spectra of only N×N matrices, where N is the number of frames used in the restoration. In certain special cases the CCMF lends itself to a closed-form solution that does not involve any matrix inversion. A special case is the motion-compensated multiframe (MCMF) filter, where each frame is assumed to be a globally shifted version of the previous frame. In this case, the interframe correlations can be implicitly accounted for using the estimated motion information. Thus the MCMF filter requires neither explicit estimation of cross correlations among the frames nor matrix inversion. Performance and robustness results are given

Published in:

IEEE Transactions on Image Processing  (Volume:1 ,  Issue: 4 )