Cart (Loading....) | Create Account
Close category search window
 

Formation of TiSi2 and shallow junction by As+ ion-beam mixing and infrared rapid heat treatment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ye, M. ; Inst. of Microelectron., Tsinghua Univ., Beijing, China ; Hui-Wang Lin ; Tsien, Pei-Hsin ; Zhang, J.-P.
more authors

A technique for forming shallow junctions with low-resistance silicide contacts developed for the use in VLSI with scaled MOSFETs is discussed. The salicide (self-aligned silicide) MOSFET gate and source-drain features self-aligned refractory metal silicide and are isolated from one another even without any insulating spacer on the gate sides. A critical step in such a MOSFET fabrication process is the ion implantation through metal silicidation technique, which includes As+ ion-beam-induced titanium-silicon interface mixing and infrared rapid heat treatment to form simultaneously the n+-p junction and a high-quality TiN covered TiSi2 contact layer

Published in:

Electron Devices, IEEE Transactions on  (Volume:36 ,  Issue: 3 )

Date of Publication:

Mar 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.