By Topic

Application of neural networks to multiple alarm processing and diagnosis in nuclear power plants

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Se Woo Cheon ; Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; Soon Heung Chang ; Hak Yeong Chung ; Zeung Nam Bien

A feasibility study of multiple alarm processing and diagnosis using neural networks is presented. The backpropagation network (BPN) algorithm is applied to the training of multiple alarm patterns for the identification of faults in a reactor coolant pump (RCP) system. The general mapping capability of the neural network makes it possible to identify a fault easily. A number of case studies are performed, with emphasis on the applicability of the neural network to the pattern recognition of multiple alarms. Based on the case studies, the neural network can identify the cause of multiple alarms well, although untrained, incomplete/sensor-failed or time-varying alarm symptoms are given. Also, multiple faults are easily identified with a given alarm pattern

Published in:

Nuclear Science, IEEE Transactions on  (Volume:40 ,  Issue: 1 )