By Topic

Generating fuzzy rules by learning from examples

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, L.-X. ; Dept. of Electr. Eng.-Syst., Univ. of Southern California, Los Angeles, CA, USA ; Mendel, J.M.

A general method is developed to generate fuzzy rules from numerical data. The method consists of five steps: divide the input and output spaces of the given numerical data into fuzzy regions; generate fuzzy rules from the given data; assign a degree of each of the generated rules for the purpose of resolving conflicts among the generated rules; create a combined fuzzy rule base based on both the generated rules and linguistic rules of human experts; and determine a mapping from input space to output space based on the combined fuzzy rule base using a defuzzifying procedure. The mapping is proved to be capable of approximating any real continuous function on a compact set to arbitrary accuracy. Applications to truck backer-upper control and time series prediction problems are presented

Published in:

Systems, Man and Cybernetics, IEEE Transactions on  (Volume:22 ,  Issue: 6 )