Cart (Loading....) | Create Account
Close category search window
 

Neuron MOS binary-logic integrated circuits. I. Design fundamentals and soft-hardware-logic circuit implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shibata, T. ; Dept. of Electron. Eng., Tohoku Univ., Sendai, Japan ; Ohmi, T.

Described are the fundamental design principles for binary-logic circuits using a highly functional device called the neuron MOS transistor (νMOS), a single MOS transistor simulating the function of biological neurons. To facilitate logic design employing this transistor, a graphical technique called the floating-gate potential diagram has been developed. It is shown that any Boolean functions can be generated using a common circuit configuration of two-stage νMOS inverters. One of the most striking features of νMOS binary-logic application is the realization of a so-called soft hardware logic circuit. The circuit can be made to represent any logic function (AND, OR, NAND, NOR, exclusive-NOR, exclusive-OR, etc.) by adjusting external control signals without any modifications in its hardware configuration. The circuit allows real-time reconfigurable systems to be built. Test circuits were fabricated by a double-polysilicon CMOS process and their operation was experimentally verified

Published in:

Electron Devices, IEEE Transactions on  (Volume:40 ,  Issue: 3 )

Date of Publication:

Mar 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.