By Topic

Investigation of an alternator charged pulse forming network with flywheel energy storage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
J. H. Gully ; Center for Electromech., Texas Univ., Austin, TX, USA ; S. B. Pratap ; R. N. Headifen ; C. Marinos
more authors

The authors present the conceptual design of a system to power an 18-shot, salvo fire 30 mm railgun. The performance of components was selected to be slightly beyond the state of the art but achievable in the near term. For instance, the baseline PFN utilizes a 935 kJ capacitor bank made up of Aerovox 1.3 J/g, 2.5 A/J, 80% efficient capacitor technology. It was sized assuming a 33% efficiency from capacitor to launch package. These capacitors would require some development and are based on the 1.5 J/g technology developed under the BTI/Army Pulse Power Module Program. The 1.5 J/g technology is based on high-voltage (24 kV), low-current capacitors. 1.3 J/g is estimated for lower-voltage (8 kV), higher-current devices. The alternator has power density of about 12 kW/kg. Compulsators have demonstrated peak powers of 100 kW/kg and are being designed to produce 500 kW/kg. The energy storage flywheel design is based on the minimization of overall system mass

Published in:

IEEE Transactions on Magnetics  (Volume:29 ,  Issue: 1 )