Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A multibus train communication (AMTRAC) architecture for high-speed fiber optic networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chlamtac, I. ; Dept. of Electr. & Comput. Eng., Massachusetts Univ., Amherst, MA, USA ; Ganz, A.

A multibus train (ordered demand assignment) communication architecture, using the AMTRAC protocol (for efficient utilization of fiber-optic-based very-high-speed networks) is presented. Taking advantage of the emerging WDM (wavelength-division multiplexing) and FDM (frequency-division multiplexing) technologies, the proposed solution introduces a coordinated multichannel control combining the performance advantages of two known approaches for high-speed communication: multichannel and train protocols. As a result an AMTRAC-based high-speed network achieves channel utilization significantly higher than previous approaches. For a network consisting of N stations, with propagation delay to packet transmission time ratio given by a, the AMTRAC architecture reaches a capacity of 1/(1+a/N 2)

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:6 ,  Issue: 6 )