By Topic

On-board sensor failure detection of an active suspension system using the generalized likelihood ratio approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Litkouhi, B. ; General Motors Res. Labs., Warren, MI, USA ; Boustany, Nader M.

The authors extend the application of the generalized likelihood ratio (GLR) approach for on-board sensor failure detection and identification (FDI) of an active suspension system using a half-car (bicycle) model. It is assumed that the control design allows for one accelerometer and two linear variable differential transformers. The failures considered are bias and increased sensor noise. The advantages and limitations of the GLR approach in locating the failed sensor and in detecting different types of failures are assessed. It is concluded that the application of this approach is feasible when the failure can be modeled as a deterministic additive term. In other situations the computational requirements make it less practical

Published in:

Decision and Control, 1988., Proceedings of the 27th IEEE Conference on

Date of Conference:

7-9 Dec 1988