By Topic

An unbiased and computationally efficient LS estimation method for identifying parameters of 2D noncausal SAR models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ping-Ya Zhao ; Dept. of Electron. Eng., East China Inst. of Technol., Nanjing, China ; Dao-Rong Yu

An unbiased and computationally efficient modified least squares (LS) estimation method for identifying parameters of two-dimensional noncausal simultaneous autoregressive models is presented. Some intuitive and mathematical proof of the unbiasedness of the method are given, and a recursive in-order fast algorithm to implement it is introduced. Computer simulation results are given to sustain the theoretical analysis. Both the theoretical analysis and the computer simulation show that the method possesses much higher estimation accuracy and lower computational complexity than the conventional LS estimation method. Compared to the approximate maximum-likelihood method of Kashyap and Chellappa (1983), the scheme is much faster, has the same estimation accuracy, and is parallelizable

Published in:

IEEE Transactions on Signal Processing  (Volume:41 ,  Issue: 2 )