By Topic

An analytical model for self-limiting behavior of hot-carrier degradation in 0.25 mu m n-MOSFET's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Liang ; Intel Corp., Santa Clara, CA, USA ; H. Gaw ; P. Cheng

Hot-carrier degradation of short-channel n-MOSFETs becomes saturated after reaching a certain threshold value. The physical mechanism for this self-limiting behavior is investigated. It is proposed that the hot-carrier-induced oxide trapped charge and interface states form a potential barrier that repels subsequent hot carriers from causing further damage and can lead to the saturation of device degradation. A physical model is developed on the basis of the analysis. The model is verified by experimental results and can be used for more accurate device reliability projection.<>

Published in:

IEEE Electron Device Letters  (Volume:13 ,  Issue: 11 )