By Topic

Dynamic programming alignment of sequences representing cyclic patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Gregor ; Dept. of Comput. Sci., Tennessee Univ., Knoxville, TN, USA ; M. G. Thomason

String alignment by dynamic programming is generalized to include cyclic shift and corresponding optimal alignment cost for strings representing cyclic patterns. A guided search algorithm uses bounds on alignment costs to find all optimal cyclic shifts. The bounds are derived from submatrices of an initial dynamic programming matrix. Algorithmic complexity is analyzed for major stages in the search. The applicability of the method is illustrated with satellite DNA sequences and circularly permuted protein sequences

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:15 ,  Issue: 2 )