By Topic

Unsupervised optimal fuzzy clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
I. Gath ; Technion-Israel Inst. of Technol., Haifa, Israel ; A. B. Geva

This study reports on a method for carrying out fuzzy classification without a priori assumptions on the number of clusters in the data set. Assessment of cluster validity is based on performance measures using hypervolume and density criteria. An algorithm is derived from a combination of the fuzzy K-means algorithm and fuzzy maximum-likelihood estimation. The unsupervised fuzzy partition-optimal number of classes algorithm performs well in situations of large variability of cluster shapes, densities, and number of data points in each cluster. The algorithm was tested on different classes of simulated data, and on a real data set derived from sleep EEG signal

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:11 ,  Issue: 7 )