By Topic

Multiresolution feature extraction and selection for texture segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Unser, Michael ; US Nat. Inst. of Health, Bethesda, MD, USA ; Eden, M.

An approach is described for unsupervised segmentation of textured images. Local texture properties are extracted using local linear transforms that have been optimized for maximal texture discrimination. Local statistics (texture energy measures) are estimated at the output of an equivalent filter bank by means of a nonlinear transformation (absolute value) followed by an iterative Gaussian smoothing algorithm. This procedure generates a multiresolution sequence of feature planes with a half-octave scale progression. A feature reduction technique is then applied to the data and is determined by simultaneously diagonalizing scatter matrices evaluated at two different spatial resolutions. This approach provides a good approximation of R.A. Fisher's (1950) multiple linear discriminants and has the advantage of requiring no a priori knowledge. This feature reduction methods appears to be an improvement on the commonly used Karhunen-Loeve transform and allows efficient texture segmentation based on simple thresholding

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:11 ,  Issue: 7 )