By Topic

Maximum a posteriori approach to object recognition with distributed sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
K. Demirbas ; Illinois Univ., Chicago, IL

The maximum a posteriori (MAP) estimation concept is applied to the problem of object recognition with several distributed sensors. It is shown that in binary object recognition the MAP object recognition also minimizes the mean-square error. Simulation results show that the performance of the MAP object recognition is, in general, at least as good as the best performance by the sensors used

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:24 ,  Issue: 3 )