Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

High-speed signal processing using systolic arrays over finite rings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Taheri, M. ; Dept. of Electr. Eng., Windsor Univ., Ont., Canada ; Jullien, G.A. ; Miller, W.C.

A modular architecture for very fast digital signal processing (DSP) elements are presented. The computation is performed over finite rings (or fields) and is able to emulate processing over the integer ring using residue number systems. The computations are restricted to closed operations (ring or field binary operators) with the ability to perform limited scaling operations. Computations naturally defined over finite mathematical systems are also easily implemented using this approach. The technique evolves from the decomposition of each closed calculation using the ring/field associativity property. Linear systolic arrays, formed with multiple elements, each of a single generic form, are used for all calculations. The pipeline cycle is determined from the generic cell and is predicted to be very fast by a critical path analysis. The cells are matched to the VLSI medium, and the resulting array structures are very dense. Examples of DSP applications are given to illustrate the technique, and example cell and array VLSI layouts are presented for a 3-μm CMOS process

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:6 ,  Issue: 3 )