By Topic

Frequency response of InP/InGaAsP/InGaAs avalanche photodiodes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Campbell, J.C. ; AT&T Bell Lab., Holmdel, NJ, USA ; Johnson, B.C. ; Qua, G.J. ; Tsang, W.T.

A theoretical model for the frequency response of InP/InGaAs avalanche photodiodes (APDs) is presented. Included in the analysis are resistive, capacitive, and inductive parasitics, transit-time factors, hole trapping at the heterojunction interfaces, and the avalanche buildup time. The contributions of the primary electrons, primary holes, and secondary electrons to the transit-time-limited response are considered separately. Using a measurement apparatus which consists of a frequency synthesizer and a spectrum analyzer controlled by a microcomputer, the frequency response of InP/InGaAsP/InGaAs APDs grown by chemical-beam epitaxy are measured. Good agreement with the calculated response has been obtained over a wide range of gains.<>

Published in:

Lightwave Technology, Journal of  (Volume:7 ,  Issue: 5 )