Cart (Loading....) | Create Account
Close category search window
 

2-Gbit/s signal amplification at lambda =1.53 mu m in an erbium-doped single-mode fiber amplifier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Giles, C.R. ; AT&T Bell Lab., Holmdel, NJ, USA ; Desurvire, E. ; Talman, J.R. ; Simpson, J.R.
more authors

The gain, saturation power, and noise of an erbium-doped single-mode traveling-wave fiber amplifier operating at a wavelength lambda =1.53 mu m are characterized. In continuous-wave (CW) measurements amplification at 2 Gbit/s was demonstrated with up to 17-dB gain for 1*10/sup -9/ bit error rate at 1.531 mu m and a 3-dB full bandwidth of 14 nm. From the determination of the fiber-amplifier's output signal-to-noise ratio versus input signal power during data transmission, it was concluded that, with signal levels used here, signal-spontaneous beat noise limited the receiver sensitivity improvement. With the fiber amplifier acting as an optical preamplifier of the receiver, the best sensitivity was -30 dBm, obtained after installing a polarizer at the fiber amplifier output to reject half of the applied spontaneous emission power. This sensitivity was 6 dB better than without the fiber amplifier, proving that the fiber amplifier can be used as a preamplifier.<>

Published in:

Lightwave Technology, Journal of  (Volume:7 ,  Issue: 4 )

Date of Publication:

April 1989

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.