By Topic

Empirical results from applying machine learning techniques to planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
T. L. McCluskey ; Dept. of Comput. Sci., City Univ., London, UK

Outlines an experimental machine learning implementation, called `FM', that applies both explanation based learning and similarity-based learning to AI planners. The system shell of FM contains techniques for learning application-dependent heuristics, through the experience of using a performance component (a planner) in that application. An application domain is supplied by specifying a set of action schemas, and environmental facts and rules. FM is then fed an initial state, and a sequence of tasks within this application, roughly in ascending order of complexity, which it is expected to solve. After each task has been solved, the system analyses the planning trace, allowing it to learn from experience

Published in:

Machine Learning, IEE Colloquium on

Date of Conference:

28 Jun 1990