By Topic

Generalized pencil-of-function method for extracting poles of an EM system from its transient response

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hua, Y. ; Dept. of Electr. & Comput. Eng., Syracuse Univ., NY, USA ; Sarkar, T.K.

A generalized pencil-of-function (GPOF) method is developed for extracting the poles of an electromagnetic system from its transient response. The GPOF method needs the solution of a generalized eigenvalue problem to find the poles. Subspace decomposition is also used to optimize the performance of the GPOF method. The GPOF method has advantages over the Prony method in both computation and noise sensitivity, and approaches the Cramer-Rao bound when the signal-to-noise ratio (SNR) is above threshold. An application of the GPOF method to a thin-wire target is presented.<>

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:37 ,  Issue: 2 )