By Topic

Neural network architecture for control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
A. Guez ; Drexel Univ., Philadelphia, PA, USA ; J. L. Eilbert ; M. Kam

Two important computational features of neural networks are associative storage and retrieval of knowledge, and uniform rate of convergence of network dynamics independent of network dimension. It is indicated how these properties can be used for adaptive control through the use of neural network computation algorithms, and resulting computational advantages are outlined. The neuromorphic control approach is compared to model reference adaptive control on a specific example. It is shown that the utilization of neural networks for adaptive control offers definite speed advantages over traditional approaches for very-large-scale systems.<>

Published in:

IEEE Control Systems Magazine  (Volume:8 ,  Issue: 2 )